• Emily Zhang
  • Fiddler

Can You Eclipse via Ellipse

2024 Apr 122024 April 12 Problem Back

This Week's Fiddler

To cover a unit circle with two congruent ellipses, we can consider an ellipse like the following:



This sufficiently covers a semicircle (allowing two of them to cover the entire circle). It has points intersecting the circle at (1,0)(1,0)(1,0), (0,1)(0,1)(0,1), and (0,−1)(0,-1)(0,−1). Let's say it is centered at (cx,0)(c_x,0)(cx​,0), with vertical axis semidiameter of length aaa and horizontal axis semidiameter of length bbb. The equation of the ellipse is thus as follows:

(x−cx)2b2+y2a2=1\frac{(x-c_x)^2}{b^2}+\frac{y^2}{a^2}=1b2(x−cx​)2​+a2y2​=1

Note that if b=1b=1b=1, we get a circle, and if b=12b=\frac{1}{2}b=21​, we get two vertical lines. So the answer must lie within b∈(12,1]b\in(\frac{1}{2},1]b∈(21​,1], minimizing for the area.

Substituting the point (1,0)(1,0)(1,0), we see that:

(1−cx)2b2=1cx=1−b\frac{(1-c_x)^2}{b^2}=1 \\ c_x=1-bb2(1−cx​)2​=1cx​=1−b

Substituting the point (0,1)(0,1)(0,1), we see that:

cx2b2+1a2=1(1−b)2b2+1a2=11−2b+b2b2+1a2=11−2bb2+1a2=0a2=b22b−1a=b2b−1\frac{c_x^2}{b^2}+\frac{1}{a^2}=1 \\ \frac{(1-b)^2}{b^2}+\frac{1}{a^2}=1 \\ \frac{1-2b+b^2}{b^2}+\frac{1}{a^2}=1 \\ \frac{1-2b}{b^2}+\frac{1}{a^2}=0 \\ a^2=\frac{b^2}{2b-1} \\ a=\frac{b}{\sqrt{2b-1}}b2cx2​​+a21​=1b2(1−b)2​+a21​=1b21−2b+b2​+a21​=1b21−2b​+a21​=0a2=2b−1b2​a=2b−1​b​

Thus, the overall area is:

A=πab=π(b22b−1)A=\pi ab=\pi\biggl(\frac{b^2}{\sqrt{2b-1}}\biggl)A=πab=π(2b−1​b2​)

Minimizing for AAA over b∈(12,1]b\in(\frac{1}{2},1]b∈(21​,1], we find that when b=23b=\frac{2}{3}b=32​, A=4π33A=\frac{4\pi}{3\sqrt3}A=33​4π​ is minimal.

This makes A≈0.7698πA\approx0.7698\piA≈0.7698π, which is between π2\frac{\pi}{2}2π​ and π\piπ as expected.

See: Desmos visualization of the right ellipse as a function of bbb

Answer: 4*pi/3/sqrt(3)


Extra Credit

An ellipse with horizontal semidiameter length of cos⁡(πN)\cos{(\frac{\pi}{N})}cos(Nπ​) and vertical semidiameter length of sin⁡(πN)\sin{(\frac{\pi}{N})}sin(Nπ​) is sufficient to intersect with (0,0)(0,0)(0,0), (cos⁡(πN),sin⁡(πN))(\cos{(\frac{\pi}{N})}, \sin{(\frac{\pi}{N})})(cos(Nπ​),sin(Nπ​)), and (cos⁡(−πN),sin⁡(−πN))(\cos{(\frac{-\pi}{N})}, \sin{(\frac{-\pi}{N})})(cos(N−π​),sin(N−π​)), successfully encapsulating a 1N\frac{1}{N}N1​ slice of the circle.

Thus, a sufficient area of one ellipse would be:

A=π(cos⁡(πN))(sin⁡(πN))A=π2sin⁡(2πN)A=\pi\biggl(\cos{\bigl(\frac{\pi}{N}}\bigl)\biggl)\biggl(\sin{\bigl(\frac{\pi}{N}\bigl)}\biggl) \\ A=\frac{\pi}{2}\sin{\biggl(\frac{2\pi}{N}\biggl)}A=π(cos(Nπ​))(sin(Nπ​))A=2π​sin(N2π​)

Thus, for N=3N=3N=3, the answer would be π2sin⁡(2π3)=3π4\frac{\pi}{2}\sin{(\frac{2\pi}{3})}=\frac{\sqrt3\pi}{4}2π​sin(32π​)=43​π​.

This makes A≈0.4330πA\approx0.4330\piA≈0.4330π, which is above π3\frac{\pi}{3}3π​ as expected.

Answer: sqrt(3)*pi/4 (for all N>2, pi/2*sin(2*pi/N))

Back to Fiddler list
© 2024 Emily Bradon Zhang·Support Gaza Recovery