• Emily Zhang
  • Fiddler

How High Can You Jump?

2024 Aug 162024 August 16 Problem Back

This Week's Fiddler

Because we only care about the ratio of aaa to bbb, we can work with a unit circle, as any radius dependency will cancel out. Let's map the scenario to the following (crudely drawn) coordinate system, where the high jumper's body is an arc of the unit circle and (0,y)(0, y)(0,y) is their center of mass.

Coordinate system used for part 1

In this case, a=ya=ya=y and b=1−yb=1-yb=1−y, so we wish to find y1−y\frac{y}{1-y}1−yy​.

The center of mass would be the average of all constituent points on the arc, and we want to find the yyy–value of said center. We can achieve this with an integral using polar coordinates, finding for any given angle θ\thetaθ the yyy–value at that angle (sin⁡θ\sin\thetasinθ). We use polar coodinates to ensure that the "density" of points remains constant throughout the integration. We want to also divide by the total arc length or "weight": π\piπ (the semiperimeter of a unit circle).

This gives us the expression:

y=1π∫0πsin⁡θ dθ=1π[−cos⁡θ]0π=1π(cos⁡0−cos⁡π)=2π\begin{align*} y&=\frac{1}{\pi}\int_0^\pi \sin\theta\ \textrm{d}\theta \\[1em] &=\frac{1}{\pi}\biggl[-\cos\theta\biggr]_0^\pi \\[1em] &=\frac{1}{\pi}\bigl(\cos0-\cos\pi\bigr) \\[1em] &=\frac{2}{\pi} \end{align*}y​=π1​∫0π​sinθ dθ=π1​[−cosθ]0π​=π1​(cos0−cosπ)=π2​​

So a=2πa=\frac{2}{\pi}a=π2​ and b=1−2πb=1-\frac{2}{\pi}b=1−π2​, making our answer:

ab=2π1−2π=2π−2\begin{align*} \frac{a}{b}&=\frac{\frac{2}{\pi}}{1-\frac{2}{\pi}} \\[1em] &=\frac{2}{\pi-2} \end{align*}ba​​=1−π2​π2​​=π−22​​

Answer: 2/(pi - 2), or about 1.75


Extra Credit

Let's consider what happens when the body is an arc of 2ϕ2\phi2ϕ instead of just a semicircle.

Extra Credit diagram

Let's use the same coordinate system as the previous part. Note that the body's lowest point now has a yyy–value of cos⁡ϕ\cos\phicosϕ instead of 000.

For this shape, we can use a similar integration technique over θ\thetaθ, this time going from π2−ϕ\frac{\pi}{2}-\phi2π​−ϕ to π2+ϕ\frac{\pi}{2}+\phi2π​+ϕ instead of from 000 to π\piπ. This means our arc length is also no longer π\piπ; it's 2ϕ2\phi2ϕ. So yyy, the yyy–value of our center of mass, is expressed as follows:

y=12ϕ∫π2−ϕπ2+ϕsin⁡θ dθ=12ϕ[−cos⁡θ]π2−ϕπ2+ϕ=12ϕ(cos⁡(π2−ϕ)−cos⁡(π2+ϕ))=12ϕ(sin⁡ϕ−sin⁡(−ϕ))=12ϕ(2sin⁡ϕ)=sin⁡ϕϕ\begin{align*} y&=\frac{1}{2\phi}\int_{\frac{\pi}{2}-\phi}^{\frac{\pi}{2}+\phi} \sin\theta\ \textrm{d}\theta \\[1em] &=\frac{1}{2\phi}\biggl[-\cos\theta\biggr]_{\frac{\pi}{2}-\phi}^{\frac{\pi}{2}+\phi} \\[1em] &=\frac{1}{2\phi}\biggl(\cos{\Bigl(\frac{\pi}{2}-\phi\Bigr)}-\cos{\Bigl(\frac{\pi}{2}+\phi\Bigl)}\biggr) \\[1em] &=\frac{1}{2\phi}\Bigl(\sin\phi-\sin{(-\phi)}\Bigr) \\[1em] &=\frac{1}{2\phi}\Bigl(2\sin\phi\Bigr) \\[1em] &=\frac{\sin\phi}{\phi} \end{align*}y​=2ϕ1​∫2π​−ϕ2π​+ϕ​sinθ dθ=2ϕ1​[−cosθ]2π​−ϕ2π​+ϕ​=2ϕ1​(cos(2π​−ϕ)−cos(2π​+ϕ))=2ϕ1​(sinϕ−sin(−ϕ))=2ϕ1​(2sinϕ)=ϕsinϕ​​

This corroborates our previous part's finding of y=2πy=\frac{2}{\pi}y=π2​ for ϕ=π2\phi=\frac{\pi}{2}ϕ=2π​. The expression y=sin⁡ϕϕy=\frac{\sin\phi}{\phi}y=ϕsinϕ​ also famously approaches 111 as ϕ→0\phi\to0ϕ→0, which checks out intuitively: the center of mass should approach y=1y=1y=1 as the body moves further and further up the coordinate system. But what about our ab\frac{a}{b}ba​ ratio?

Because the tips of the body now start at a yyy–value of cos⁡ϕ\cos\phicosϕ instead of 000, aaa needs to be adjusted to y−cos⁡ϕy-\cos\phiy−cosϕ. Note that bbb is still 1−y1-y1−y because the yyy–value of the highest point is still 111. So we wish to find the ratio of y−cos⁡ϕ1−y\frac{y-\cos\phi}{1-y}1−yy−cosϕ​ as ϕ→0\phi\to0ϕ→0:

lim⁡ϕ→0ab=lim⁡ϕ→0y−cos⁡ϕ1−y=lim⁡ϕ→0sin⁡ϕϕ−cos⁡ϕ1−sin⁡ϕϕ=lim⁡ϕ→0sin⁡ϕ−ϕcos⁡ϕϕ−sin⁡ϕ=00\begin{align*} \lim_{\phi\to0}\frac{a}{b}&=\lim_{\phi\to0}\frac{y-\cos\phi}{1-y} \\[1em] &=\lim_{\phi\to0}\frac{\frac{\sin\phi}{\phi}-\cos\phi}{1-\frac{\sin\phi}{\phi}} \\[1em] &=\lim_{\phi\to0}\frac{\sin\phi-\phi\cos\phi}{\phi-\sin\phi} \\[1em] &=\frac{0}{0} \end{align*}ϕ→0lim​ba​​=ϕ→0lim​1−yy−cosϕ​=ϕ→0lim​1−ϕsinϕ​ϕsinϕ​−cosϕ​=ϕ→0lim​ϕ−sinϕsinϕ−ϕcosϕ​=00​​

We can use L'Hôpital's Rule here!

lim⁡ϕ→0ab=lim⁡ϕ→0ddϕ(sin⁡ϕ−ϕcos⁡ϕ)ddϕ(ϕ−sin⁡ϕ)=lim⁡ϕ→0cos⁡ϕ+ϕsin⁡ϕ−cos⁡ϕ1−cos⁡ϕ=lim⁡ϕ→0ϕsin⁡ϕ1−cos⁡ϕ=00\begin{align*} \lim_{\phi\to0}\frac{a}{b}&=\lim_{\phi\to0}\frac{\frac{\textrm{d}}{\textrm{d}\phi}(\sin\phi-\phi\cos\phi)}{\frac{\textrm{d}}{\textrm{d}\phi}(\phi-\sin\phi)} \\[1em] &=\lim_{\phi\to0}\frac{\cos\phi+\phi\sin\phi-\cos\phi}{1-\cos\phi} \\[1em] &=\lim_{\phi\to0}\frac{\phi\sin\phi}{1-\cos\phi} \\[1em] &=\frac{0}{0} \end{align*}ϕ→0lim​ba​​=ϕ→0lim​dϕd​(ϕ−sinϕ)dϕd​(sinϕ−ϕcosϕ)​=ϕ→0lim​1−cosϕcosϕ+ϕsinϕ−cosϕ​=ϕ→0lim​1−cosϕϕsinϕ​=00​​

And again...

lim⁡ϕ→0ab=lim⁡ϕ→0ddϕ(ϕsin⁡ϕ)ddϕ(1−cos⁡ϕ)=lim⁡ϕ→0ϕcos⁡ϕ+sin⁡ϕsin⁡ϕ=00\begin{align*} \lim_{\phi\to0}\frac{a}{b}&=\lim_{\phi\to0}\frac{\frac{\textrm{d}}{\textrm{d}\phi}(\phi\sin\phi)}{\frac{\textrm{d}}{\textrm{d}\phi}(1-\cos\phi)} \\[1em] &=\lim_{\phi\to0}\frac{\phi\cos\phi+\sin\phi}{\sin\phi} \\[1em] &=\frac{0}{0} \end{align*}ϕ→0lim​ba​​=ϕ→0lim​dϕd​(1−cosϕ)dϕd​(ϕsinϕ)​=ϕ→0lim​sinϕϕcosϕ+sinϕ​=00​​

And again!

lim⁡ϕ→0ab=lim⁡ϕ→0ddϕ(ϕcos⁡ϕ+sin⁡ϕ)ddϕ(sin⁡ϕ)=lim⁡ϕ→0−ϕsin⁡ϕ+cos⁡ϕ+cos⁡ϕcos⁡ϕ=lim⁡ϕ→02cos⁡ϕ−ϕsin⁡ϕcos⁡ϕ=2\begin{align*} \lim_{\phi\to0}\frac{a}{b}&=\lim_{\phi\to0}\frac{\frac{\textrm{d}}{\textrm{d}\phi}(\phi\cos\phi+\sin\phi)}{\frac{\textrm{d}}{\textrm{d}\phi}(\sin\phi)} \\[1em] &=\lim_{\phi\to0}\frac{-\phi\sin\phi+\cos\phi+\cos\phi}{\cos\phi} \\[1em] &=\lim_{\phi\to0}\frac{2\cos\phi-\phi\sin\phi}{\cos\phi} \\[1em] &=2 \end{align*}ϕ→0lim​ba​​=ϕ→0lim​dϕd​(sinϕ)dϕd​(ϕcosϕ+sinϕ)​=ϕ→0lim​cosϕ−ϕsinϕ+cosϕ+cosϕ​=ϕ→0lim​cosϕ2cosϕ−ϕsinϕ​=2​

Answer: 2

Back to Fiddler list
© 2024 Emily Bradon Zhang·Support Gaza Recovery